

International conference 6-9 JUNE 2023

Espace Prouvé, Nancy, France

Evaluation and Damping of High-Frequency Vibrations on a **Tightening Tool**

O. Lundin and R. Haettel, Atlas Copco Industrial Technique AB

Presentation Outlines

- Introduction
- Background
- Jure NANCY FRANCE • Measurement set-up and procedure
- Test results
- Post-paper studies
- Conclusion

JA

A Few Applications with Atlas Copco Tools

11

Background

- Pulsating tightening tools are common in most industries for their high torque-to-reaction-force ratio
- The <u>pulse mechanism</u> may generate <u>harmful vibration levels</u>
- Choosing an oil dampened pulsating tools over an impact tool will reduce vibration levels
- A tool with a shut-off mechanism that stops when the correct torque is reached will reduce vibration exposure time
- Tightening tool with pulse unit and shut-off => <u>Atlas Copco ErgoPulse PTI-range</u>
- EP7 PTI55 provided a useful test case with potential for field tests
- Low vibration emissions according to ISO 28927-2
- Potential for high frequency vibrations due to pulse unit
- Experimental study for evaluation and damping of high frequency vibrations

Measurement Procedure

- Vibration levels were measured by using a triaxial accelerometers located on the handle of the <u>EP7 Tool</u> run in the <u>C.2 Brake device</u> described in ISO 28927-2 Annex C.
- The measurements were conducted according to the <u>guidelines given in ISO 28927-2</u>. However, the procedure was simplified by using only one machine run by two operators that each performed five runs of 10 s.
- An initial series of measurements was conducted with a factory new tool, which was retrofitted with dampening material underneath the regular handle's rubber cover.
- The <u>time signals</u> were acquired with a <u>sampling</u> <u>frequency of 65.536 Hz</u> and in addition to a digital lowpass filter at 10 kHz.
- The time signals were evaluated for Vibration Peak

<u>Magnitude</u> according to: $VPM = \sqrt{\frac{\sum a^{2+2k}}{\sum a^{2k}}}$ with k = 2

Experimental Set-Up

11

Added vibration dampening foam

Re-Covered with new original rubber cover

Test Results

	ΤοοΙ	Regular handle		Damped handle	
	1	VPM (Std. deviation) [m/s ²]	${f a}_{{f hw}}$ (Std. deviation) [m/s ²]	VPM (Std. deviation) [m/s ²]	a_{hw} (Std. deviation) [m/s ²]
	X	415,1 (77,0)	1,8 (0,1)	253,2 (66,9)	1,5 (0,1)
	Y:	458,6 (46,8)	2,0 (0,3)	326,4 (83,2)	1,7 (0,2)
	Z:	618,9 (170,0)	1,7 (0,4)	268,5 (52,0)	1,1 (0,1)
	Norm (X, Y, Z):	888,6 (113,9)	3,1 (0,4)	500,3 (80,7)	2,5 (0,2)

Lab Test Summary

- Slight decrease for the declared vibration emission value from 3.1 m/s² to 2.5 m/s² cannot be fully attributed to the added damping. Official declaration value for the EP7 PTI55 is 3.3 m/s² with an <u>uncertainty</u> K = 0.9 m/s².
- <u>VPM</u> was reduced from 888,6 to 500,3 m/s² with the most significant reduction in the Z-axis (normal to the handle surface)
- <u>VPM</u> is indicated to be a reliable value for high frequency vibrations

Continuation: post-paper field test

Four tools were field tested for one month at a customer comparing 2 different dampening materials.

- One material type lost its dampening property before the month was over, which the operators could feel
- The other material had a small dampening reduction but not statistical significant
- Each tool was positioned at a work station in a production line with the same amount of joints per day to ensure equal test conditions
- Operator feedback was very positive

Continuation post-paper: Tool for higher torques, EP19PTX450

Conclusions

- <u>VPM</u> is a suitable parameter for evaluation of high frequency vibrations
- There is clearly a high frequency content above 1 kHz for pulsating nutrunners which VPM captures
- More field tests are required, especially for durability of dampening materials.
- Material selection should be made specifically for each tool

I